Carbolong Chemistry: Planar CCCCX-Type (X = N, O, S) Pentadentate Chelates by Formal [3+1] Cycloadditions of Metalla-Azirines with Terminal Alkynes
نویسندگان
چکیده
Open AccessCCS ChemistryCOMMUNICATION1 Feb 2021Carbolong Chemistry: Planar CCCCX-Type (X = N, O, S) Pentadentate Chelates by Formal [3+1] Cycloadditions of Metalla-Azirines with Terminal Alkynes Ming Luo, Yuhui Hua, Kaiyue Zhuo, Lipeng Long, Xinlei Lin, Zhihong Deng, Zhenyang Hong Zhang, Dafa Chen and Haiping Xia Luo College Chemistry Chemical Engineering, Xiamen University, Fujian Province Google Scholar More articles this author , Hua Zhuo Long Lin Deng Department Chemistry, The Kong University Science Technology, Clear Water Bay, Kowloon, Zhang Southern Shenzhen, Guangdong *Corresponding author: E-mail Address: [email protected] https://doi.org/10.31635/ccschem.020.202000223 SectionsSupplemental MaterialAboutAbstractPDF ToolsAdd to favoritesTrack Citations ShareFacebookTwitterLinked InEmail Three-membered unsaturated rings have been widely utilized in organic synthesis due their inherent highly strained structures. Although much research has applied ring-expansion reactions such ring systems, pathways other than [3+2] cycloadditions rarely observed alkynes, date, no isolated three-membered alkynes reported. Here we demonstrate an unprecedented cycloaddition which a fused metalla-azirine is used as template generate series planar CCCCX-type pentadentate carbolong complexes 3–6. A substituted was tested for further exploration the scope mechanism reactions. Complexes 3– 6 represent rare examples that assemble four ?-conjugated one bridgehead atom. These novel are thermally stable air absorb ultraviolet, visible, near-infrared light, thus potentially applicable photoelectric devices pharmaceuticals. Download figure PowerPoint Introduction Ring-expansion compounds small fundamental transformations synthesis.1–6 Among various rings, common can serve three-atom synthons variety addition taking advantage high reactivity, derived from strain.4,6 With exception certain synthetic equivalents or analogues,7–12 however, previously reported these were seen transformations, typically following pathway. For example, cyclopropenes be form five-membered (Figure 1a, left).13–15 Analogous also low-valent metal-mediated oxidative cyclometalation yield metallacyclopentadienes via metalla-cyclopropenes right).16,17 As another paradigm azacyclic 2H-azirines successfully undergone diverse different bond cleavage modes, providing expedient approaches N-heterocyclic skeletons 1b, left).18–21 In sharp contrast, there appear reports on analogous azametallacycles—that is, metalla-azirines—with alkynes. fact, reactivities metalla-azirines explored.22,23 Figure 1 | (a) Cycloaddition (b) terminal Polydentate among most studied because fascinating structures functions. expanding bidentate, tridentate, tetradentate ligands attracted tremendous interest,24–28 high-coordination complexes, proven very difficult achieve.29–31 coordinating atoms those polydentate primarily drawn range donor heteroatoms including P, S. To carbons sole principal sites ligand rare,32–34 probably owing inaccessible atypical geometries. Recently, developed unique metal polycyclic frameworks featuring long carbon chain (?7 C) coordinated atom at least three metal?carbon bonds.35 Herein, report first alkynes; therefore, aza-metallacyclobutene skeleton generated congested metallacyclic leading formation remarkable all five lie equatorial plane. Results Discussion Osmapentalyne 136 employed precursor desired metalla-azirine. Treatment sodium azide (NaN3) dichloromethane (DCM) room temperature led complex 2, green solid 65% 2). Crystals 2 suitable X-ray crystallographic analysis obtained saturated solution DCM temperature. Reactions osmapentalyne (c) Solid-state 3a? (the counterion Cl?) crystallography 50% probability ellipsoids. Solvent molecules, counterion, phenyl groups PPh3 omitted clarity. Selected experimental distances (Å) angles (deg) 2: Os(1)?C(1) 2.092(8), Os(1)?C(4) 2.078(8), Os(1)?C(7) 2.011(8), Os(1)?N(1) 2.424(7), C(1)?C(2) 1.460(12), C(2)?C(3) 1.371(12), C(3)?C(4) 1.420(12), C(4)?C(5) 1.355(12), C(5)?C(6) 1.416(13), C(6)?C(7) 1.407(12), C(1)?N(1) 1.207(11); Os(1)–C(1)–C(2) 119.2(6), C(1)–Os(1)–N(1) 29.9(3), C(1)–N(1)–Os(1) 59.7(5), N(1)–C(1)–Os(1) 90.5(6). 3a: 2.063(4), 2.078(5), 2.088(4), Os(1)?C(8) 2.102(4), Os(1)?O(1) 2.129(3), 1.455(6), 1.378(6), 1.425(6), 1.374(7), 1.424(6), 1.385(6), 1.324(6), C(8)?N(1) 1.404(6), C(8)?C(9) 1.333(6), C(9)?C(10) 1.458(6), C(10)?O(1) 1.309(6); Os(1)?C(1)?N(1) 110.1(3), C(1)?N(1)?C(8) 89.9(3), N(1)?C(8)?Os(1) 104.7(3), C(8)?Os(1)?C(1) 55.16(17). data 2b) show moiety bicyclic framework, osmium adopting pentagonal bipyramidal coordination geometry. Os?N distance 2.424(7) Å within 1.636?2.544 Å37 single distances. Os?C comparable osmapentalenes,38 osmapentalene C?C lengths invariably intermediate between double bonds. coplanar two reflected mean deviation 0.005 least-squares Probably stabilization aromatic persist several months when exposed even heated 80 °C 3 h. carboazidation azides, example trimethylsilyl azide, extensively explored afford 1-azidoalkenes, subsequently converted 2H-azirines.39,40 Such not yet achieved carbyne triple-bond systems. Very recently, constrained transition-metal units into tricyclic system realized late azides.33 Here, ( 2) metallapentalyne 1) [2+1] reaction azide. hand, proceeded investigate its reactivity shown 2a, containing carboxyl ester presence AgBF4 furnished unexpected tetracyclic 3) good yields. unsymmetrical molecular structure 3a elucidated single-crystal analysis. It turns out added alkynyl four-membered osmacycle 2c). retain almost same geometry quite similar: 2.063(4) Å, 2.078(5) 2.088(4) Å. newly formed Os?C8 [2.102(4) Å] slightly longer unit, but falls Os–C bonds (1.894–2.162 Å),37 could attributed strain induced ring. Close inspection C?C/C?N/C?O framework suggests length equalization rings. metallacycles nearly coplanar, indicated 0.0630 plane through Os1, O1, N1, C1–C10. corresponding lengths, together planarity metallacycles, indicate extensive ?-electron delocalization over 13 3a. facts suggest 3a-A dominant resonance possible 3). Four shed light unusual number under conditions. situ NMR experiments unreactive toward internal (such dimethyl acetylenedicarboxylate acetylenedicarboxylic acid), alkyl-substituted cyclopropylacetylene 1-pentyne), ethynyltrimethylsilane 3-bromopropyne). phenylacetylene derivatives 4-nitrophenylacetylene) mixtures without target products. Furthermore, methyl 3-deuteriopropiolate instead propiolate performed, deuterated product 3b? (see Supporting Information S13 details). We inferred might favored O-heterocycle, important contribution tethered structure. Accordingly, investigated whether heteroatom-containing substituents reactive. similar took place 2-ethynylthiophene, 2-ethynylpyridine, 2-ethynylaniline. 4, 5, 6, respectively) yields identified elemental noteworthy 4 represents CCCCS complex. On basis observations, propose using 5 4). alkyne silver salt may initially ?-alkyne A). Subsequent isomerization mononuclear ?2-complex metal-vinylidene ?1-complex B),41 kinetically favorable barrier 8.8 kcal/mol. Nucleophilic nitrogen ?-carbon would lead aza-metallacyclobutene. At point, allows pyridyl coordinate center, affording metallacycle contributor final 5). Our density functional theory (DFT) calculations support mechanisms reveal formal process B indeed exergonic. Gibbs free-energy profile DFT-calculated 298 K. computed free energies CCCCX exhibit thermal stability both state. survive temperature, 130 more originates only frameworks, chelating effects steric protection groups). large ?-systems possess some properties, therefore examined ultraviolet–visible (UV–Vis) absorption spectra chelates (at concentration × 10?4 M). metal-bridgehead remarkably broad UV visible up 850 nm region). instance, maximum (?max 703 nm) redshifted better conjugation. Time-dependent DFT B3LYP/6-31G(d) level describe 6. assigned HOMO?LUMO electronic transitions Table S1 UV–vis 3–6 measured CH2Cl2 Conclusion summary, Substituents crucial success reactions, since they enable systems stabilize resulting This method operationally straightforward provides distinct advance production Collectively, our findings offer valuable supplement construction chelates. Studies delivery structurally sophisticated subject ongoing work. available. Conflict Interest authors declare competing interests. Acknowledgments work supported National Natural Foundation China (U1705254, 21871225, 21931002), Fundamental Research Funds Central Universities (20720190042), Grants Council (N_HKUST603/15). References 1. Mack D. J.; Njardarson J. T.Recent Advances Metal-Catalyzed Ring Expansions Three- Four-Membered Rings.ACS Catal.2013, 3, 272–286. 2. Ohno H.Synthesis Applications Vinylaziridines Ethynylaziridines.Chem. Rev.2014, 114, 7784–7814. 3. S.; W.-X.; Xi Z.Semibullvalene Diazasemibullvalene: Recent Synthesis, Reaction Synthetic Applications.Acc. Chem. Res.2015, 48, 1823–1831. 4. D’hooghe M.; Ha H.-J.Heterocyclic Synthesis 4- 7-Membered Heterocycles Expansion; Springer: Geneva, 2016. 5. Yang Shi M.Recent Transition-Metal-Catalyzed/Mediated Transformations Vinylidenecyclopropanes.Acc. Res.2018, 51, 1667–1680. Rosenthal U.Reactions Group Metallocene Bis-(Trimethylsilyl)acetylene Nitriles Isonitriles.Angew. Int. Ed.2018, 57, 14718–14735. 7. Z.; Fischer R.; Hara Sun W.- H.; Obora Y.; Suzuki N.; Takahashi T.Zirconocene-Mediated Intramolecular Carbon–Carbon Bond Formation Two Alkynyl Groups Bis(alkynyl)silanes.J. Am. Soc.1997, 119, 12842–12848. 8. Álvarez E.; Hernández Y. A.; López-Serrano Maya C.; Paneque Petronilho Poveda M. L.; Salazar V.; Vattier F.; Carmona E.Metallacyclic Pyridylidene Structures Pyridylidenes Alkenes Acetylene.Angew. Ed.2010, 49, 3496–3499. 9. Prechter Henrion G.; Bel P. Gagosz F.Gold-Catalyzed Functionalized Pyridines Using 2H-Azirines Equivalents Alkenyl Nitrenes.Angew. Ed.2014, 53, 4959–4963. 10. Li T.; Xu X.; Wang Wan B.Ruthenium-Catalyzed C–C Cleavage 2H-Azirines: [3+2+2] Fused Azepine Skeletons.Angew. Ed.2016, 55, 2861–2865. 11. Massey L. Zavalij Doyle P.Catalytic Asymmetric [3+1]-Cycloaddition Ylides Electrophilic Metallo-Enolcarbene Intermediates.Angew. Ed.2017, 56, 7479–7483. 12. Teng H.-L.; Nishiura Hou Z.Diastereodivergent Carboamination/Annulation Cyclopropenes Aminoalkenes Chiral Lanthanum Catalysts.J. Soc.2017, 139, 16506–16509. 13. Wender Paxton T. Williams J.Cyclopentadienone Rhodium(I)-Catalyzed Cyclopropenones Alkynes.J. Soc.2006, 128, 14814–14815. 14. Patel Boger L.Intramolecular [1+2] Cyclopropenone Ketals.J. Soc.2010, 132, 8527–8529. 15. Huang Q.; Ho C. Y.(NHC)NiIIH-Catalyzed Cross-Hydroalkenylation Cyclopropene Alkyne: Straight Forward Cyclopentadiene NHC-NiII Assisted Rearrangement.Angew. Ed.2019, 58, 5702–5706. 16. Buchwald Nielsen R. B.Group Metal Benzynes, Cycloalkynes, Acyclic Alkynes, Alkenes.Chem. Rev.1988, 88, 1047–1058. 17. Ma W.; Yu Z.Metallacyclopentadienes: Structure Reactivity.Chem. Soc. Rev.2017, 46, 1160–1192. 18. Xuan X. D.; Zeng Feng Z. Lu Xiao W. J.Visible-Light-Induced Pyrrole Under Metal-Free Conditions.Angew. 5653–5656. 19. Zhu Mao L.Gold-Catalyzed Intermolecular Nitrene Transfer Ynamides: Direct Approach Polysubstituted Pyrroles.Org. Lett.2015, 17, 30–33. 20. Pawar K.; Sahani Liu S.Diversity Gold-Catalyzed Ynamides Azidoalkenes versus [4+3] Cycloadditions.Chem. Eur. J.2015, 21, 10843–10850. 21. Yan Alkynes: Access Pyrroles.J.Org. Chem.2016, 81, 12031–12037. 22. Choukroun Lorber Donnadieu B.Reactivity Vanadocene Nitrile–C?N Activated Tris(fluorophenyl)borane Lewis Acid: Borane Adducts Vanada(IV)azirine Complexes-EPR Evidence C–F?V Interaction.Chem. J.2002, 8, 2700–2704. 23. Vendier B.Mono- Homobimetallic Vanadium Complexes: Complexes.Organometallics2004, 23, 5488–5492. 24. Gunanathan Milstein D.Bond Activation Catalysis Ruthenium Pincer Complexes.Chem. Rev., 2014, 12024–12087. 25. Khusnutdinova D.Metal–Ligand Cooperation.Angew. Ed.2015, 54, 12236–12273. 26. Zheng B.; K.-W.A New Class PN3-pincer Ligands Metal-Ligand Cooperative Catalysis.Coord. Rev.2015, 293–294, 116–138. 27. Goncalves P.; Lupp K.-W.PN3(P)–Pincer Beyond.ACS Catal.2019, 9, 1619–1629. 28. Tanaka Osuka A.Chemistry Meso-Aryl-Substituted Expanded Porphyrins: Aromaticity Molecular Twist.Chem. 117, 2584–2640. 29. Vereshchuk Matheu Benet-Buchholz Pipelier Lebreton Dubreuil Tessier Gimbert-Suriñach Ertem Llobet A.Second Coordination Sphere Effects Evolved Ru Complex Based Highly Adaptable Ligand Rapid Oxidation Catalysis.J. Soc.2020, 142, 5068–5077. 30. Hamon R.Recent Developments Penta-, Hexa- Heptadentate Schiff Base Their Complexes.Coord. Rev.2019, 389, 94–118. 31. Sala A.The Role Seven-Coordination Ru-Catalyzed Oxidation.ACS Catalysis,2018, 2039–2048. 32. Zhou Pang Nie H.Successive Modification Gives Carbon- Nitrogen-Based Ligands.Nat. Commun.2019, 10, 1488. 33. Cai H.Access Tetracyclic Aromatics Bridgehead Metals Metalla-click Reaction.Sci. Adv., 2020, eaay2535. 34. H.CCCCC Möbius Unique Properties.Sci. Adv.2016, e1601031. 35. H.Carbolong Story Carbon Chain Transition Metals.Acc. 1691–1700. 36. Niu Cao Wen Xie Schleyer v. H.Stabilization Anti-Aromatic Strained Five-Membered Rings Metal.Nat. Chem.2013, 698–703. 37. Chiu S.-M.; Wong T.-W.; Man W.-L.; W.-T.; Peng Lau T.-C.Facile Addition Salophen Coordinated Nitridoosmium(VI).J. Soc.2001, 123, 12720–12721. 38. Wu I.-C.; H.Planar Aromatic Pentalenes Incorporating 16 18 Valence Electron Osmiums.Nat. Commun.2014, 3265. 39. Ye G.Copper-Catalyzed Trifluoromethylazidation Efficient CF3-Substituted Azirines Aziridines.Angew. 9356–9360. 40. Xiong Ramkumar Chiou M.-F.; Jian Su J.- Bao H.Iron-Catalyzed Carboazidation Alkynes.Nat. Commun.2018, 122–129. 41. Roh Choi Lee C.Transition Vinylidene-and Allenylidene-Mediated Organic Synthesis.Chem. 4293–4356. Previous articleNext article FiguresReferencesRelatedDetails Issue AssignmentVolume 3Issue 2Page: 758-763Supporting Copyright & Permissions© 2020 Chinese SocietyKeywordsmetallacyclesplanar chelatescarbolong complexes[3+1] reactionDFT calculationsstrained ringsAcknowledgmentsThis Downloaded 1,325 times Loading ...
منابع مشابه
CCCCC pentadentate chelates with planar Möbius aromaticity and unique properties
The coordinating atoms in polydentate chelates are primarily heteroatoms. We present the first examples of pentadentate chelates with all binding atoms of the chelating agent being carbon atoms, denoted as CCCCC chelates. Having up to five metal-carbon bonds in the equatorial plane has not been previously observed in transition metal chemistry. Density functional theory calculations showed that...
متن کاملCu-catalyzed ring opening reaction of 2H-azirines with terminal alkynes: an easy access to 3-alkynylated pyrroles.
A highly efficient Cu-catalyzed ring expansion reaction of 2H-azirines with terminal alkynes has been developed. This transformation provides a powerful method for the synthesis of 3-alkynyl polysubstituted pyrroles under mild conditions in good yields. The direct transformation process, specific selectivity, and good tolerance to a variety of substituents make it an alternative approach to the...
متن کاملInsertion of alkynes into Pt-X bonds of square planar [PtX2(N^N)] (X = Cl, Br, I) complexes.
The reactivity with acetylene of [PtX2(Me2phen)] (X = Cl, Br, I) complexes has been investigated. Whereas the chlorido species [PtCl2(Me2phen)] exhibits negligible reactivity at short reaction times, the bromido and iodido species [PtBr2(Me2phen)] and [PtI2(Me2phen)] lead initially to formation of Pt(II) five-coordinate complexes, [PtX2(η(2)-CH≡CH)(Me2phen)], that evolve to four-coordinate alke...
متن کاملHighly regioselective nitrile oxide dipolar cycloadditions with ortho-nitrophenyl alkynes.
The dipolar cycloadditions of ortho-nitrophenyl alkynes with aryl nitrile oxides has been demonstrated. A range of substituents are tolerated on the alkyne. These reactions proceed with excellent levels of regioselectivity. Subsequent functionalization of the isoxazole scaffold has been demonstrated.
متن کاملPeptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides.
The cycloaddition of azides to alkynes is one of the most important synthetic routes to 1H-[1,2,3]-triazoles. Here a novel regiospecific copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides on solid-phase is reported. Primary, secondary, and tertiary alkyl azides, aryl azides, and an azido sugar were used successfully in the copper(I)-catalyzed cycloaddition producing div...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: CCS Chemistry
سال: 2021
ISSN: ['2096-5745']
DOI: https://doi.org/10.31635/ccschem.020.202000223